In this new basis the \mathbf{f} vector has the components $f_{1}^{\prime} f_{2}^{\prime} \ldots f_{n}^{\prime}$ found by the transformation

$$
\begin{equation*}
\left(f_{1}^{\prime} f_{2}^{\prime} \ldots f_{n}^{\prime}\right)=\left(f_{1} f_{2} \ldots f_{n}\right) \mathbf{M} \tag{8}
\end{equation*}
$$

Now it is obvious from the form (5) that with the help of this new basis $\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{n}$, the inner product can be written:

$$
\begin{equation*}
\mathbf{f} \cdot \mathbf{v}=\mathbf{F}^{\prime} \mathbf{V}=\left(f_{1}^{\prime} \cdot v_{1}+f_{2}^{\prime} \cdot v_{2}+\ldots f_{n}^{\prime} \cdot v_{n}\right) \tag{9}
\end{equation*}
$$

or for the length or the norm of the vector:

$$
\begin{equation*}
(\mathbf{f} \cdot \mathbf{f})^{1 / 2}=\left(f_{1}^{\prime} \cdot f_{2}+f_{2}^{\prime} \cdot f_{2}+\ldots f_{n}^{\prime} \cdot f_{n}\right)^{1 / 2} \tag{10}
\end{equation*}
$$

To conclude, we state the fact that in any given vector space a reciprocal basis can be constructed with the help of the metric matrix. This reciprocal basis can be used to conserve the form (9) of an inner product. For a linear operator \hat{P} it conserves the form of the matrix-element in the representation of this operator, namely:

$$
\begin{equation*}
P_{i j}=\mathbf{b}_{i} \cdot\left(\hat{P} \mathbf{a}_{j}\right) \tag{11}
\end{equation*}
$$

For the three-dimensional Euclidian space it can easily be verified that definition (7) is equivalent to definition (1). The difference is that definition (7) does not need the concept of a skew product of vectors, a concept which loses significance in spaces of more or fewer dimensions.

Acta Cryst. (1974). A30, 847
Coherent neutron scattering amplitudes. By G. E. Bacon (for The Neutron Diffraction Commission), The University, Sheffield S10 2TN, England
(Received 28 May 1974; accepted 28 May 1974)
A list is given which summarizes additions and significant changes which have been reported since the publication of a full list of scattering amplitudes in 1972 [Acta Cryst. (1972). A28, 357-358].

In Table 1 are listed additions and significant changes which have been reported since the publication of a full list of scattering amplitudes by Bacon (1972).

References

Abul Khail, A., Amin, F. A., Al-Naim, A., Al-Sai, A., Al-Shahery, G. Y., Petrunin, V. F. \& Zemlyanov, M. G. (1972). Acta Cryst. A28, 473.

Bacon, G. E. (1972). Acta Cryst. A28, 357-358.
Koehler, W. C. \& Moon, R. M. (1972). Phys. Rev. Lett. 29, 1468-1472.
Koehler, W. C., Moon, R. M., Cable, J. W. \& Child, H. R. (1972). J. Phys. Radium, 32 (C1), 296-298.

Kuznietz, M. \& Wedgwood, F. A. (1972). Acta Cryst. A28, 655.
LindQvist, O. \& Lehmann, M. S. (1973). Acta Chem. Scand. 27, 85-95.
Mueller, M. H., Lander, G. H., Reddy, J. F. (1974). Acta Cryst. A 30, 667-671.
Schobinger-Papamentellos, P., Fischer, P., Vogt, O. \& Kaldis, E. (1973). J. Phys. C, 725-737.
Wedgwood, F. A. \& Burlet, P. (1974). In the press.

Table 1. Coherent scattering amplitudes

Element for			
Z	Isotope	$b\left(10^{-12} \mathrm{~cm}\right)$	Reference
7	${ }^{15} \mathrm{~N}$	$0 \cdot 65$	Kuznietz \& Wedgwood (1972).
12	${ }^{24} \mathrm{Mg}$	0.55	Abul Khail, Amin, Al-
	${ }^{25} \mathrm{Mg}$	$0 \cdot 36$	Naimi, Al-Saji, Al-Shahery, Petrunin \& Zem-
	${ }^{26} \mathrm{Mg}$	$0 \cdot 49$	lyanov (1972).
52	Te	$0 \cdot 58$	Lindqvist \& Lehmann (1973).
60	Nd	0.75	Schobinger-Papamentellos, Fischer, Vogt \& Kaldis (1973).
62	${ }^{154} \mathrm{Sm}$	0.96	Koehler \& Moon (1972).
63	Eu	$\begin{aligned} & 0.68 \text { at } \lambda=1.067 \\ & 0.61 \text { at } \lambda=0.75 \AA \end{aligned}$	W. C. Koehler \& J. W. Cable (unpublished).
64	${ }^{160} \mathrm{Gd}$	0.915	Koehler, Moon, Cable \& Child (1972).
91	${ }^{231} \mathrm{~Pa}$	$1 \cdot 3 \pm 0 \cdot 2$	Wedgwood \& Burlet (1974).
95	${ }^{243} \mathrm{Am}$	0.76	
96	${ }^{244} \mathrm{Cm}$	~ 0.7 \}	Reddy (1974).

